Home

AWS S3

AWS S3 is an object storage service offering industry-leading scalability, data availability, security, and performance. It is read-only and supports below file formats:

The S3 Wrapper allows you to read data of below formats from S3 within your Postgres database.

  1. CSV - with or without header line
  2. JSON Lines
  3. Parquet

The S3 Wrapper also supports below compression algorithms:

  1. gzip
  2. bzip2
  3. xz
  4. zlib

Note for CSV and JSONL files: currently all columns in S3 files must be defined in the foreign table and their types must be text type.

Note for Parquet files: the whole Parquet file will be loaded into local memory if it is compressed, so keep the file size as small as possible.

Supported Data Types For Parquet File#

The S3 Wrapper uses Parquet file data types from arrow_array::types, below are their mappings to Postgres data types.

Postgres TypeParquet Type
booleanBooleanType
charInt8Type
smallintInt16Type
realFloat32Type
integerInt32Type
double precisionFloat64Type
bigintInt64Type
numericFloat64Type
textByteArrayType
dateDate64Type
timestampTimestampNanosecondType

Preparation#

Before you get started, make sure the wrappers extension is installed on your database:


_10
create extension if not exists wrappers;

and then create the foreign data wrapper:


_10
create foreign data wrapper s3_wrapper
_10
handler s3_fdw_handler
_10
validator s3_fdw_validator;

Secure your credentials (optional)#

By default, Postgres stores FDW credentials inide pg_catalog.pg_foreign_server in plain text. Anyone with access to this table will be able to view these credentials. Wrappers is designed to work with Vault, which provides an additional level of security for storing credentials. We recommend using Vault to store your credentials.


_14
-- Save your AWS credential in Vault and retrieve the `key_id`
_14
insert into vault.secrets (name, secret)
_14
values (
_14
'vault_access_key_id',
_14
'<access key id>'
_14
)
_14
returning key_id;
_14
_14
insert into vault.secrets (name, secret)
_14
values (
_14
'vault_secret_access_key',
_14
'<secret access key>'
_14
)
_14
returning key_id;

Connecting to S3#

We need to provide Postgres with the credentials to connect to S3, and any additional options. We can do this using the create server command:


_10
create server s3_server
_10
foreign data wrapper s3_wrapper
_10
options (
_10
vault_access_key_id '<your vault_access_key_id from above>',
_10
vault_secret_access_key '<your vault_secret_access_key from above>',
_10
aws_region 'us-east-1'
_10
);

Creating Foreign Tables#

The S3 Wrapper supports data reads from S3.

IntegrationSelectInsertUpdateDeleteTruncate
S3

For example:


_13
create foreign table s3_table_csv (
_13
name text,
_13
sex text,
_13
age text,
_13
height text,
_13
weight text
_13
)
_13
server s3_server
_13
options (
_13
uri 's3://bucket/s3_table.csv',
_13
format 'csv',
_13
has_header 'true'
_13
);

One file in S3 corresponds a foreign table in Postgres. For CSV and JSONL file, all columns must be present in the foreign table and type must be text. You can do custom transformations, like type conversion, by creating a view on top of the foreign table or using a subquery.

For Parquet file, no need to define all columns in the foreign table but column names must match between Parquet file and its foreign table.

Foreign table options#

The full list of foreign table options are below:

  • uri - S3 URI, required. For example, s3://bucket/s3_table.csv
  • format - File format, required. csv, jsonl, or parquet
  • has_header - If the CSV file has header, optional. true or false, default is false
  • compress - Compression algorithm, optional. One of gzip, bzip2, xz, zlib, default is no compression

Examples#

Some examples on how to use S3 foreign tables.

Basic example#

This will create some "foreign table" inside your Postgres database can read data from S3:


_75
-- CSV file, no compression
_75
create foreign table s3_table_csv (
_75
name text,
_75
sex text,
_75
age text,
_75
height text,
_75
weight text
_75
)
_75
server s3_server
_75
options (
_75
uri 's3://bucket/s3_table.csv',
_75
format 'csv',
_75
has_header 'true'
_75
);
_75
_75
-- JSON line file, no compression
_75
create foreign table s3_table_jsonl (
_75
name text,
_75
sex text,
_75
age text,
_75
height text,
_75
weight text
_75
)
_75
server s3_server
_75
options (
_75
uri 's3://bucket/s3_table.jsonl',
_75
format 'jsonl'
_75
);
_75
_75
-- GZIP compressed CSV file
_75
create foreign table s3_table_csv_gzip (
_75
name text,
_75
sex text,
_75
age text,
_75
height text,
_75
weight text
_75
)
_75
server s3_server
_75
options (
_75
uri 's3://bucket/s3_table.csv.gz',
_75
format 'csv',
_75
has_header 'true',
_75
compress 'gzip'
_75
);
_75
_75
-- Parquet file, no compression
_75
create foreign table s3_table_parquet (
_75
id integer,
_75
bool_col boolean,
_75
bigint_col bigint,
_75
float_col real,
_75
date_string_col text,
_75
timestamp_col timestamp
_75
)
_75
server s3_server
_75
options (
_75
uri 's3://bucket/s3_table.parquet',
_75
format 'parquet'
_75
);
_75
_75
-- GZIP compressed Parquet file
_75
create foreign table s3_table_parquet_gz (
_75
id integer,
_75
bool_col boolean,
_75
bigint_col bigint,
_75
float_col real,
_75
date_string_col text,
_75
timestamp_col timestamp
_75
)
_75
server s3_server
_75
options (
_75
uri 's3://bucket/s3_table.parquet.gz',
_75
format 'parquet',
_75
compress 'gzip'
_75
);